Learning a Semantically Discriminative Joint Space for Attribute Based Person Re-identification
نویسندگان
چکیده
While attributes have been widely used for person re-identification (Re-ID) that matches the same person images across disjoint camera views, they are used either as extra features or for performing multi-task learning to assist the image-image person matching task. However, how to find a set of person images according to a given attribute description, which is very practical in many surveillance applications, remains a rarely investigated cross-modal matching problem in Person Re-ID. In this work, we present this challenge and employ adversarial learning to formulate the attribute-image cross-modal person Re-ID model. By imposing the regularization on the semantic consistency constraint across modalities, the adversarial learning enables generating image-analogous concepts for query attributes and getting it matched with image in both global level and semantic ID level. We conducted extensive experiments on three attribute datasets and demonstrated that the adversarial modelling is so far the most effective for the attributeimage cross-modal person Re-ID problem.
منابع مشابه
Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning.
A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied extensively for knowledge-transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable semantic attributes, w...
متن کاملTransferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification
Most existing person re-identification (re-id) methods require supervised model learning from a separate large set of pairwise labelled training data for every single camera pair. This significantly limits their scalability and usability in real-world large scale deployments with the need for performing re-id across many camera views. To address this scalability problem, we develop a novel deep...
متن کاملJoint Learning for Attribute-Consistent Person Re-Identification
Person re-identification has recently attracted a lot of attention in the computer vision community. This is in part due to the challenging nature of matching people across cameras with different viewpoints and lighting conditions, as well as across human pose variations. The literature has since devised several approaches to tackle these challenges, but the vast majority of the work has been c...
متن کاملOn the Exploration of Joint Attribute Learning for Person Re-identification
This paper presents an algorithm for jointly learning a set of mid-level attributes from an image ensemble by locating clusters of dependent attributes. Human describable attributes are an active research topic due to their ability to transfer between domains, human understanding, and improvement to identification performance. Joint learning may allow for enhanced attribute classification when ...
متن کاملLearning Affine Hull Representations for Multi-Shot Person Re-Identification
We consider the person re-identification problem, assuming the availability of a sequence of images for each person, commonly referred to as video-based or multi-shot reidentification. We approach this problem from the perspective of learning discriminative distance metric functions. While existing distance metric learning methods typically employ the average feature vector as the data exemplar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.01493 شماره
صفحات -
تاریخ انتشار 2017